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Analytical solutions of all edge clamped cylindrical 
panels are  important boundary value problems to study, 
particularly with advanced fibre reinforced lamination.  
Its complex forms of coupled partial differential 
equations that represent the characteristic behaviours of 
panels have attracted many researchers (Librescu et al, 
Kabir )  to study its in-depth behaviours.  Two sets of 
solution functions in the form of double Fourier series 
both not satisfying the geometric boundary conditions 
have been selected. to solve five highly  coupled partial 
differential equations in five unknowns that characterize 
a moderately thick shell behaviour.    The analysts or 
designers use various shell theories (CST), for example, 
Love (1927), Donell (report no. 479) Flugge(1960), 
Sanders(1959), and Reissners (Bert and Kumar 1982), 
depending on the requirements, of shell geometries in 
their analyses or design works.  The solution approach of 
shells/panels using such shell theories can be categorized 
into two broad groups: analytical and approximate 
numerical methods.  Due to the complexity involved in 
the former one, the later one has become very popular in 
the last three to four decades.  However, the users of the 
later method always desire to see the analytical-based 
solution to check the accuracy of their approximations.  
Normally, these are accomplished solving some bench-
mark analytical solutions. 
An extensive literature search has revealed that the 
aforementioned shell theories for the case of cylindrical 
panels with all edge clamped boundary conditions did 
receive analytical solutions to boundary value problems.  
The two double-Fourier series based solution approaches, 
Navier and Levy types, that are available in the literature 
for a century are applicable to very limited boundary 
conditions.  For example, Naviers (Bert et al. 1982) 
approach is suitable for a SS3-type boundary conditions 
(Hoff and Rehfield 1965; Kabir and Chaudhuri 1993)  at 
all edges, and Levy-type (Librescu et al. 1989) approach 
is suitable for a SS3-type boundary conditions at two 
opposite edges while other edges can be combination of 
SS1, SS2 or C4 boundary conditions.   
No other boundary-value problems, e.g. C4 at all edges, 
are reported in the literature for the study of  cylindrical 
panels.  Only recently, Kabir and Chaudhuri (1994) have 
studied the static response of cylindrical panels utilizing a 
boundary discontinuous double Fourier series solution 
functions.  In their study, they have developed a 
generalized solution approach of Naviers. The cylindrical 
panel behaviours are represented by five displacement 
unknowns such as ݑଵ, ,ଶݑ ,ଷݑ ,ଵߠ  ଶ. The solutionߠ ݀݊ܽ
functions they have assumed in the form of double 
Fourier series as  
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The above assumed functions fully satisfy the geometric 
boundary conditions. Now the following displacement 
functions are assumed: 
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The above set of solution functions partially satisfy 
(except ݑଷ )  the geometric boundary conditions.  
The partial differential equations based on Sanders’ 
kinematic relations are as follows: 
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Table 1 shows comparison of edge and central moment 
for cylindrical panels with respect to finite method.  
Average converged results are reported.  



 
 

 

A comparison of eigen-values with the present method 
and finite element method for a cylindrical panel is listed 
in Table 1. 

 
Moment b/a = 1;  r/a = 10;  a/h 

= 50 
 b/a = 1; r/a = 

10;  a/h = 100 
 

 Analy
tical 

FEM 
(ANSYS
)/Analyti
cal 

FEM 
(NISA)
/Analyt
cal 

Analy
tical 

FEM 
(ANSYS
)/Analyti
cal 

FEM 
(NISA)/
Analytica
l 

M 1 0.98 0.98 1.0 0.97 0.97 

M(ed
ge)  

1 0.93 0.93 0.9 0.9 0.9 

Table 1: Comparison of the present and finite element 
solutions.   
 

        
 
 
Fig. 1 Convergences of Moments for Isotropic Square 
Plate 
 
    

 
 
 
Figure 2 Convergences Moments for Isotropic Square 
Cylindrical Panel. 
 
 
 
 
 

 
 

  
   

 
 
 
Figure 3 Convergences of Moments for a Cross-Ply 
(0/90) Cylindrical Panel.  
 

CONCLUSION 
 
An analytical solution is developed and compared with 
the commercially available finite element solution.  
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