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Introduction

In this work laminated arches are solved under
condition that isotropic layers are considered.
Mathematical apparatus is briefly discussed and
formulas needed for programming on computers are
derived. The focus here is concentrated on a
problem of impact load, which can be simulated by
developing time coordinate into the Fourier series.
The solution is formulated for simply supported or
clamped layered arch. A semi-analytic solution is
used for simply supported arch, and the conditions
for clamped edges are taken from a well known
Lechnitski’s book on Theory of plates, [1]. The
boundary conditions are identified by selection of
sine or cosine series applied to different directions
of displacements. Two-dimensional example is
solved.

Behavior in one lamina

This section is focused on one lamina from
laminate cylindrical segment (arch). We start with
introducing polar coordinates θr0 , which are
derived from Cartesian coordinates xy0 .
Components of the displacement vector are

θuvuu r =,= , where ru  is the displacement in the

radial direction and θu is the displacement in the
circumferential (hoop) direction, and the plain
strain state is considered. The cylindrically isotropic
structure is described by Hooke’s law in each lam-
ina:

θθθ εσθεσ rrrjiji GrjiL =and,=,,=

notationin vectoror,= Lεσ
(1)

where the stress tensor σ is related with the strain
tensor ε through the material stiffness matrix, and

θrjiij GLL ,=  are stiffness coefficients, θθLLrr = ,

θθ rrrr GLL 2=- . From these assumptions it
follows that only two material coefficients describe
each lamina. In the above description the number of
layer is dropped out.

The kinematical equations are written in polar
coordinates as:
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The Hooke law can now be written as:
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Two equations of equilibrium provide relations
among three components of stress tensor:
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where ρ  is the mass density of the lamina under
account, t is the time.

We solve now the declared problem on one layer
(lamina) in terms of the semi-analytical method.
For this we introduce sine and cosine series and a
coefficient α , which describes the position of a
concrete term in the series. Expressing α  as

 .= mα , where positive integer   is the number in

the term in the Fourier series and m =
β
π

.

Expanding two components of displacements into
sine and cosine series and denoting the  -th term
depending only on r by 

rU and 
U yields

( ) ( )

( ) ( ) )iexp(sin=,,

),iexp(cos=,,

trUtru

trUtru rr

ωθαθ

ωθαθ
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(5)

where  VUUU r  and  are unknown functions
of r which need to be determined from the
equations of equilibrium. In particular, substituting
(1) into the stress-strain relations gives stresses
which, when substituted into the equations of
equilibrium in cylindrical coordinates, provide the
following equations for evaluation of  VU and .

Components of strains, (2), and stresses, (3), are
then expressed using (5). Substituting the result into
the first static equation (4) one gets:
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The second equation of equilibrium is the following:
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where:
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and r  is the average of the radii in the trial lamina.
The solution of simultaneous equations (6) and

(7) can be done using the substitution: )exp(= λr .
Then the above differential equations are solved in
standard way to get roots   of characteristic
equation of the fourth order to the fundamental

solutions: 4321 ,,,  rrrr . The characteristic
equation provides roots:

4 + (A1+B1 -A2B2)2 + A1B1 - A3B3 = 0, 4-b2 +c=0
(8)

where )1(=
2

4-
=

2

4,3,2,1 αλ
cbb

.

The fundamental solution for unknown amplitudes
of displacements U  and V  follows as:
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The last step in the computation in one lamina is
expressing the strains and stresses. It is enough to
use (9) and substitute them in the expression (2) to
obtain strains and to (3) to get stresses.

Entire structure

Introducing kk b rar =and= to be the radii of
boundaries of the lamina k, yields the interfacial
and boundary conditions ( kra aP  2 ,

krb bP  2 , kra aS 
2 kra bS 

2 ):

for

1 kk bar :


kba PkPkP  )1()( , 
kba SkSkS  )1()( ,

)1()(  kUkU ba
 , )1()(  kVkV ba



On the boundaries, for ar = and br =  the external
load has to be developed in the Fourier series and
the coefficients in it must be in a compliance with
the adjacent layers. The resulting linear algebraic
system of equations can be stored as:

UKP )(= ω   (10)

where the left hand side is the vector describing the
interfacial radial and shear tractions, K is the
stiffness and mass matrix of the structure involving
the eigenfrequency ω , U means the vector of radial
and hoop displacements on the interfaces.

Examples and conclusions

In order to verify the accuracy of the suggested
approach attained on an arch with the following
dimensions and material properties are: the length l
= 1 m, the external radius r = 2 m, the thickness = 5
mm, β = 0.5 rad, E = 200 GPa, ρ  = 7833 kg/m3,
ν = 0.29. Always one layer is different form the
others, defined above. The difference consists in
elastic modulus E = 20 GPa. According to the
position of this particular layer the eigenfrequencies
are depicted in Fig. 1. From this picture it is seen
that the largest eigenfrequencies are attained if the
particular layer is positioned in lower laminas, as
the numbering is from lower to upper layer. From
couple of examples this result can be generalized.

Fig. 1 The first and the second eigenfrequencies
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