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Introduction 
 
Not-filled rubber has a similar modulus of 
elasticity K as polymer glasses. However, they 
differ with respect to them in several points:  

 
1. Their Poisson ratio is close to 0.5. 
Consequently, the modules E, G are much 
lower than K. Normal value of E non- rubber is 
the order of 100 MPa (10-3 GPa).  
2. The work expended on deformation of the 
rubber is almost completely transformed into 
heat.  
3. Equilibrium modulus of elasticity is 
proportional to absolute temperature.  
 
Dependence of shear stress on shear 
deformation of rubber is almost linear. The 
curve expressing the dependence of stress on 
deformation in compression is nonlinear, 
deflected upwards. Shear modulus is almost 
equal to the third module E, Poisson ratio is 
very close to 0.5.  
Elongation increases with increasing level of 
network creation process. Elongation with 
increasing degree of cross-linking decreases 
monotonically, strength initially increases, 
reach a peak value and then decreases. Stress 
increases with increasing direction in the area 
above the tensile curve inflection point. Length 
of the tensile curve inflection point and thus the 
value of strength and elongation is the greater 
the greater degree of orientation crystallization 
is present in the material structure.  
Time (relaxation) phenomena in the range of  
small and medium deformations in filled natural 
rubber (at room temperature) are characteristic 
of almost negligible hysteresis. In the area 
above the inflection point there is observed a 
large hysteresis. It is caused by orientation 
crystallization.  
These phenomena are described by the 
phenomenological theory of rubbery elasticity. 
Mooney-Rivlin equation (MR) is describing a 

tensile curve of rubbery networks very well to 
the inflection point.  
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The parameters C1, C2 are evaluated from 
experimental data. From these equations 
follows the expression for elastic modulus: 
E = 6C1 + 6C2; G = 2C1 + 2C2        (2) 
 
Experimental 
 
Materials and methods:  
Tested samples of EPDM and NBR rubber 
were present in the form of plates having 
dimensions of (180 × 160 × 6) mm resp. (180 × 
160 × 2) mm. Tensile testing and biaxial tensile 
testing was performed on Shimadzu Autograph 
AG-X and 3D Optical Deformation 
Measurements – 3D ARAMIS. 
 
Results and discussion 
 
Measured stress-strain dependences for 
different deformation rates are shown in Figs. 1 
and 2.  
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Fig. 1. Stress strain dependence for rubber 
plate 2 mm thick for deformation rate 50 
mm/min. Full line – results of the calculation 
according to the model (1). 
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Fig. 2. Stress strain dependence for ruber 
plate 2 mm thick for deformation rate 50 
mm/min. Full line – results of the calculation 
according to the model (1). 
 
Obtained Mooney-Rivlin parameters were used 
for FEM calculations. TG DTG experiments 
were performed for characterization of thermal 
stability of studied materials. Obtained 
magnitudes of activation energy corresponds 
to the degradation of natural rubber. 
 

Table 1. Calculated activation energy values of 
thermal decomposition of studied rubber 
materials according to Kissinger and OFW 
methods. 
 

OFW Ea (kJ/mol) 
α = 5% 233.5 
α = 10% 194.4 
α = 20% 188.6 
α = 30% 160.3 
Kissinger 161.9 
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Fig. 3. Bi-axial tensile testing results: (a) Thickness reduction vs. loading. (b) Minor strain vs. loading. 
 

(a) 

 
 

(b) 

 


