
FREE VIBRATION ANALYSIS OF GRID STIFFENED COMPOSITE CYLINDRICAL SHELLS

Milad Hemmatnezhad* and Hossein Rahimi

* Department of Mechanical Engineering, Tarbiat Modares University, P. O. Box 14115-143 Tehran, Iran
E-mail: m.hemmatnezhad@modares.ac.ir

Abstract
In this study, a unified analytical approach is applied to 
investigate the vibrational behavior of grid stiffened 
composite cylindrical shells. A smeared method is employed 
to superimpose the stiffness contribution of the stiffeners 
with those of shell in order to obtain the equivalent stiffness 
parameters of the whole panel. Theoretical formulations are 
based upon Sanders’ thin shell theory. The Influence of 
variations in shell geometrical parameters and changes of the 
cross stiffeners angle on the shell frequencies are studied. 
Keywords: Vibration; Analytical approach; Grid stiffened 
cylindrical shells; Sanders’ theory

Introduction

Cylindrical shells due to their high strength as well as light 
weight have gained widespread use in most branches of 
structural engineering such as in launch vehicles, spacecrafts
and etc. Large number of publications which expanded 
rapidly in the past decades testifies to this. An excellent 
collection of research in this area was carried out by Leissa 
[1]. There are also some good reviews on vibration of 
composite shells using experimental, analytical and 
numerical techniques [2–4]. 
Grid stiffened cylinders are cylinders with stiffening
structures either on the inner, outer or both sides of the shell. 
These stiffeners significantly increase the load resistance of 
a cylinder without much increase in weight. The promising 
future of stiffened composite cylinders has in turn led to an
extensive research work [5, 6].
The number of publications deal with the mechanical 
behavior of composite cylinder with cross stiffeners is 
scarce. Kidane et al. [6] derived the buckling loads of a 
generally cross and horizontal grid stiffened composite 
cylinder by developing a smeared method for determination 
of the equivalent stiffness parameters of a grid stiffened 
composite cylindrical shell. Recently, Yazdani and Rahimi
have performed investigations on the buckling behavior of
composite cylindrical shells with cross stiffeners [7]. 
In the present work a calculation of overall response of 
simply supported orthotropic cylindrical shells with 
horizontal and cross stiffeners is presented using an exact 
analytical approach with theoretical formulations based upon 
Sanders’ theory. The Influence of variations in shell 
geometrical parameters and changes of the cross stiffeners 
angle on the shell frequencies are studied.

Equivalent stiffness

Consider a composite cylindrical shell reinforced with an 
isogrid stiffener structure as shown in Fig. 1. First of all it is 
required to determine the equivalent stiffness parameters of 

the overall structure in order to calculate the vibration 
frequencies of a composite cylinder with inner stiffening 
structure. The analytical tool employed for this, so called the
smeared stiffener approach, uses a mathematical model to 
smear the stiffeners into an equivalent laminate and 
determine the equivalent orthotropic stiffness of the laminate
(For further details the reader is referred to [6]).

Fig. 1 Unit cell and coordinate system for an isogrid 
stiffened cylindrical shell.

The relationships between boundary forces and strains for a 
cylindrical shell are given as
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where the s and sh superscripts stand for stiffener and shell 
respectively. In the above equation, sV and shV are the
volume fractions of stiffener and shell respectively. A, B and
D define the extensional, coupling, and bending stiffness 
coefficients, respectively.  and  are the strains and 
curvatures defined as below based on the Sanders’ thin shell 
theory
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Equations of Motion

The following shell equations according to Sanders’ theory
in terms of axial, ,x and circumferential, , coordinates, are 
used
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where ,u v and w are the axial, tangential and radial 
displacements, respectively. In above equation, 1I is the 
inertia term for composite shell. A comma before a subscript 
denotes differentiation with respect to that subscript and dots 
denote time derivatives. 
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Method of solution

For a circular cylindrical shell the displacement field can be 
written in the following form for any circumferential wave 
numbern
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where  is the natural frequency of the shell. This set
fulfills the exact solution for the shell with simply supported 
ends with No Axial constraint (SNA-SNA) which has 
boundary conditions at each end of the form

0 ( 0, )x xN v w M x L     (5)
Substitution of the set of displacement functions and their 
derivatives into Eq. (3) leads to an explicit relation for 

0nA and a matrix equation in which ,mn mnA B and mnC are 
coupled together
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For a non-trivial solution of Eq. (6), the determinant of the 
coefficient matrix must vanish,
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resulting in a characteristic equation whose eigenvalues are 
the natural frequencies of the SNA-SNA shell. The
corresponding eigenvectors also determine the mode shapes. 

Results and discussion

The type of composite material used hereafter is HS-
Graphite/Epoxy. The geometrical parameters of the 
considered grid stiffened cylinder are as follows

2180 mm, 70mm, 90mm, 6 * 2.8 mm , 30 , 30sL R b A        

Fig. 2 shows the variation of the fundamental natural 
frequency of an isogrid stiffened composite cylinder against 
the shell length. It can be seen that with an increment in the 
shell length, the fundamental natural frequency of both 
unstiffened and stiffened shells decrease and the difference 
between two is significant for lower values of the length.
Also, the values of the frequencies for the unstiffened shell 
are higher than that of stiffened shell. This is mainly because 
of the grid structure which results into an increase in the 
mass and a decrease in the natural frequency as a 
consequence. The effect of the cross stiffeners angle on the 
fundamental natural frequency is examined in Fig. 3 for
three values of the circumferential wave numbers which 
clarifies the significant effect of this angle on the vibration 
frequencies.

Fig. 2 Variation of the fundamental natural frequency with 
the shell length ( 1n  ).
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Fig. 3 Variation of the fundamental natural frequency with 
the cross stiffeners angle.

Conclusion
A unified exact analsis is employed to investigate the 
dynamic behavior of grid composite circular cylindrical 
shells. The present approach can be generalized to obtain 
the vibration frequencies of shells with different 
boundary conditions. Results obtained clarify that the 
natural frequencies of stiffened cylinder are lower than 
that excluding the effect of stiffeners. Also, the cross 
stiffeners angle has significant effect on the vibration of 
the stiffened cylinder. Further, with an increment in the 
shell length, the fundamental natural frequency of both 
unstiffened and stiffened shells decrease.
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